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Abstract

Droplets moving at close distances interact hydrodynamically. We present the experimental and theoret-
ical results of a study for monodisperse 73lm geometric diameter droplets with initial velocities between 1.5
and 3m/s and variable generation rate (ranging from 125 to 2000s�1) emitted horizontally and vertically.
During the decelerated motion the droplet Reynolds number varied between the value <1 and 10. The
hydrodynamic interaction depends on the spatial distance, and we observed a considerable increase of
the droplet trajectory endpoints with increasing generation rate.

Reviewing the various approaches for the description of hydrodynamic interactions, we adapted a theory
for a stationary Stokes flow past a linear array of spheres and found a surprisingly good agreement between
our experiments and the above model. Even better agreement was obtained by additionally taking the Bas-
set force into account.
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1. Introduction

Droplets and solid particles play an important role in many natural and industrial processes
where energy, mass and momentum are exchanged between the particles. Hydrodynamic inter-
actions, i.e. momentum exchange becomes increasingly important as the inter-particle distances
become smaller which may be the case even at relatively low concentrations as they prevail in
e.g. clouds, where droplet coalescence finally may lead to giant droplets falling out due to
gravity.

Due to the importance of the problem much work has been carried out and still is continuously
devoted to studies of the interaction of particle assemblages in various configurations.

For creeping flow, where the Reynolds number (Re) is zero, an analytical expression for the
fluid velocity distribution for unbounded Stokes flows is known. Solutions to such situations
were reviewed in the classical monograph of Happel and Brenner (1973). An analysis of drag
change for Stokes flow past finite assemblages of particles using the multipole representation
technique was presented by Gluckman et al. (1971). Within the method the disturbance due to
each submerged object is represented by an infinite series of multipoles placed at the center of
the object, where each multipole series has a different origin. The strength of each multipole is
obtained so as to satisfy the non-slip boundary conditions along the surface of all interacting par-
ticles simultaneously. The accuracy of the method can be improved by the addition of higher
order multipoles. The drag reduction results were presented for flows past chains containing
up to 101 spheres.

For intermediate and high Reynolds numbers the theoretical study of particle interaction be-
comes more complex due to the necessity of taking into account the influence of the non-linear
terms of the Navier–Stokes equations on the hydrodynamic interaction forces. Numerical ap-
proaches were used for describing the particle interactions in the non-zero Reynolds numbers re-
gime: Tal et al. (1983), Kim et al. (1993), Raju and Sirignano (1990), Tsai and Sterling (1990),
Chiang and Sirignano (1993a,b), Liang et al. (1996), among others.

Hydrodynamic interaction of particles for different configurations was studied experimentally
by Rowe and Henwood (1961), Lee (1979), Tsuji et al. (1982), Nguen et al. (1991), Nguen and
Dunn-Rankin (1992), Zhu et al. (1994), Liang et al. (1996), Lavergne et al. (1997), Chen and
Lu (1999), and Chen and Wu (2000). The experiments of Lee (1979), Tsuji et al. (1982) pertain
to the case when Re > 125. Rowe and Henwood (1961) measured the drag force of spherical par-
ticles in the Re number range from 32 to 96 for two aligned particles and linear chains as well as
for other configurations. They found a weak Re dependence on the drag force of the trailing par-
ticle. Zhu et al. (1994) presented the results of direct measurements of the drag force on two lon-
gitudinally interacting particles for Re varying from 20 to 130. They proposed an empirical
equation for the drag force variation of a single particle trailing in the wake of a leader. Liang
et al. (1996) extended the experimental study of particle drag change to multiple interacting
spheres of different configuration in almost the same Re range. Along with the experiments, they
obtained numerical solutions to the Navier–Stokes equations for three axially aligned particles
using the CFD code Fluent. Numerical drag coefficients were found to be in reasonable agreement
with experiments.

Chen and Lu (1999) and Chen and Wu (2000) focused their attention on the drag and flow
characteristics of a sphere in the presence of surrounding spheres of different sizes and located
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at various distances and angles in a similar range of Reynolds numbers. One of the conclusions
from this work is that the influence of inter-particle distance and the size of the neighbor sphere
on the drag of the tested sphere increases when the neighbor sphere is located upstream of the test
sphere. Fluid flow through stationary particle assemblages was also discussed in the above-men-
tioned works.

The influence of droplet spacing on the drag coefficient of single droplets injected into stagnant
air was studied experimentally by Mulholland et al. (1988). Initial Reynolds numbers ranged from
90 to 290 and particle diameters between 205 and 450lm. Fitting the experimental trajectories to
calculated ones, they derived a formula for the drag coefficient as a function of Reynolds number
and inter-particle distance.

Nguen et al. (1991) and Nguen and Dunn-Rankin (1992) presented the results of measurements
and calculation of the trajectories of vertically traveling droplet packets and horizontally emitted
chains of droplets. In both cases the particles (50, 127 and 145lm) had a large initial velocity �6–
12 m/s and rapidly decelerated in still air. Again, good correlation between experiments and
numerical model was observed. Under the experimental conditions the collision of a trailing drop-
let with the leading droplet occurred in a very short time. Because of this, the trajectory after col-
lision of two particles was continued with one particle of combined mass. The average drag on the
first trailing droplet was found to be 75% in downwards traveling packets and 90% in an initially
horizontal chain.

Reviewing the literature we arrived at the conclusion that there is a gap in knowledge concern-
ing hydrodynamic interactions in the small and intermediate region Re < 10 typical for cloud pro-
cesses, where particle assemblages undergo the combined influence of electrostatic and acoustic
forces (thunderclap) as well as hydrodynamic interaction with the latter being potentially signi-
ficant in such situations.

In order to fill some gap in the above important Reynolds number range we performed an
experimental and theoretical study of the decelerating motion of chains of droplets injected into
still air using monodisperse droplets with a size of 73lm varying their initial velocity between 1.5
and 3m/s and their generation rate (generation frequency) between 125 and 2000s�1. The droplet
Reynolds number is defined by Rep ¼ dqgj�vj=l, where d is the particle diameter, qg is the fluid den-
sity, l is the fluid viscosity, �v is the particle velocity vector. Using horizontal and vertical ejection
directions (with respect to gravity), the droplet Reynolds number decreases from 10 to the value
<1 for a deceleration of the droplet from an initial position with a constant velocity until to the
droplet stopping. This Reynolds number range corresponds to the case where convective inertial
effects are important but the wake behind the spherical particle has not yet formed.

In the present paper we develop a mathematical model of the quasistationary motion of drop-
lets in a particle chain. The model takes into account the drag reduction of the particles as a func-
tion of time and inter-particle distance. The drag reduction of individual particle was found by
fitting the drag correction values in stationary Stokes flow through a linear array calculated
according to Gluckman et al. (1971). Comparing experimental and theoretical trajectories, the
average value of drag reduction for the whole chain as a function of the droplet generation fre-
quency was determined. The horizontal droplet trajectory endpoints and height of particle ver-
tical jump calculated using the numerical model were compared with corresponding
experimental values. The influence of the Basset force on particle chain dynamics is also briefly
discussed.
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2. Experimental part

The experiments were done with 73lm geometric diameter tri-ethylene-glykole (TEG) droplets
ejected horizontally (or nearly vertically) from a piezoelectric generator (Microdrop GmbH,
http://www.microdrop.de) with velocities between 1.5 and 3m/s.

The original generator was modified with a heater for operating the nozzle at constant temper-
ature 42� ± 0.5 �C in an optimum viscosity range for stable sizes and housed (with all supporting
electronics and a nozzle-imaging web camera) in a closed 5 · 15 · 15cm3 box providing calm air
for the droplets. Trajectories of instantaneous droplet chains were photographed using a macro
lens EF100 USM and a Canon EOS-D30 illuminated by a modified macro ring light MR14-
EX. Intra-experiment pictures were taken at about one second intervals, and changing generation
rates with precisely re-adjusting droplet speeds took about 2min. The trajectory envelops of all
experiments were highly reproducible; only the later-in-time pairwise droplet distances varied,
reflecting higher order interactions (i.e. 3D trajectory curvature effects not taken into account
in the 1D model) and/or slightly variable diameter/velocity initial conditions.

The stopping distance is primarily determined by the particle diameter, its density and its initial
velocity. Particle diameter and velocity depend on driver voltage and pulse width applied to the
piezo actuator. TEG has a density of 1455kg/m3. The geometric particle diameters gd were deter-
mined gravimetrically from three samples of 10000 droplets each for the individual droplet veloc-
ity and generation frequency. The results of orthogonal scans for variable generation-frequencies
at constant velocity (Fig. 1a) and for variable velocity at constant generation frequency (Fig. 1b)
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Fig. 1. Variation of geometric droplet diameter derived from gravimetry of 10000 droplets for different generation rates
and initial velocities. The error bars are one standard deviation.
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Fig. 2. Nozzle with emerging droplets after various times past the actuator pulse (118ls: upper left; 239ls: upper right;
298ls: lower left; 747ls: lower right). Frame size is 2.46 · 1.85mm2.
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are shown below. We see that the effect of changing operating conditions is reasonably small and
of the order of overall gravimetric measuring uncertainty.

The initial particle velocities were determined directly at the nozzle exit from the analysis of dis-
tances travelled in certain times (see Fig. 2).

Figs. 3 and 4 show the overlay of a few typical trajectories for horizontal and nearly vertical
jets, so that rising and falling droplet branches can be discriminated. The overlay was constructed
Fig. 3. Overlay of horizontal droplet jets with initial velocity of 2.39m/s and generation rates of 160(3), 500(2) and
800(1) droplets/s (from right). Image dimension is 18.0 · 10.8mm2.



Fig. 4. Overlay of nearly vertical jets with initial velocity of 2.39m/s and generation rates of 400(3), 1000(2) and 1600(1)
droplets/s. The picture ordinate is inclined by 13� with respect to the gravity vector. Rising droplets are on the right
side, where the jets overlap. Image dimension is 10.7 · 22.7mm2.
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from the original JPG camera pictures by taking identical sections, converting them to a gray-
scale picture, assigning the three pictures to the RGB channels and re-combining the frames to
a new JPG using Mathematica 4.2 and 5.0.
3. Mathematical model formulation

Although the droplets motion is nearly two-dimensional, the experimental trajectories in the
parts used for numerical calculations are smooth enough (i.e. the curvature much larger than
the droplet diameter) to justify the approximation of axisymmetric flow over a sphere that is
widely used to write the equation of small droplets motion. The droplets are assumed to be spheri-
cal and non-rotating. The motion of small particles in non-uniform creeping flow is described by
the equation derived by Maxey and Riley (1983) (see also Michaelides, 1997). The equation of
unsteady motion of a single particle for noncreeping flow is obtained by empirically modifying
the Stokes law drag force and for the case of motion in still air can be written in the form (here
with gravity as the only external force)
mp
d�v
dt

¼ � 1

8
CD0pld

2�vj�vj � 1

2
mg

d�v
dt

þ ðmp � mgÞ�g � Ch
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2
d2 ffiffiffiffiffiffiffiffiffiffi
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Here, mp is the mass of the particle, mg is the (in our case negligible) mass of fluid displaced by the
particle and �g is the gravity vector.

The first term on the right side of Eq. (1) is the stationary drag force with a semi-empirical coef-
ficient CD0(Re) of the Reynolds correction of the Stokes drag law. The second term of the added
mass force can be omitted due to the small ratio of the fluid density to the particle density for
liquid aerosol particles in air. Next terms are the gravity and the history (Basset) forces
respectively.

For the considered range of droplet Reynolds numbers we should account the deviation of the
droplet drag from the Stokes drag law. Instead of the original series expansion by Oseen and
others, following Clift et al. (1978), we employ the widely used empirical form of drag correction
with the Reynolds number
CD0 ¼
24

Rep
ð1þ 0:15Re0:687p Þ: ð2Þ
In our experiments we observed a decelerating motion of spherical particles in still air while,
strictly speaking, particle drag coefficients could be influenced by unsteadiness. Temkin and
Mehta (1982) investigated experimentally the magnitude of the departure of unsteady drag from
steady one. Accordingly their results the unsteady drag coefficient in the range 9 < Re < 115 can
be expressed through the steady drag coefficient CD0 and the dimensionless relative acceleration
parameter A by the fitting formula
CDt ¼ CD0 � kA ð�45 < A < �3, k ¼ 0:048Þ:
The parameter A is defined as
A ¼
qp

qg

� 1

 !
MA, MA ¼ d

U 2
r

dU r

dt
, ð3Þ
where Ur is the relative velocity between fluid and droplet. For the decelerating motion of the
droplets in the experiments the derivative dUr/dt is the negative quantity. Hence we can use
the formula (3) to estimate the difference between unsteady and steady drag coefficients. The
parameter A in our problem decreases in time from the value A = �1.6. Corresponding deviation
of the steady drag coefficients from the unsteady one calculated by (3) is less than 1%. It allows us
to conclude that the change of drag coefficient caused by unsteadiness can be neglected.

The Basset force expressed by the integral term in (1) is due to combined action of viscosity and
(mostly) acceleration. It has a drag effect on the particle in unsteady motion. In most works on
aerosol particle motion the Basset force is usually neglected due to small influence and numerical
difficulties. Fuchs (1964) noted the importance of the Basset force for decelerating motion of par-
ticles. It leads to an increase of stopping distance of decelerating particles.

Note that the expression for the Basset force in (1) is not fully consistent with the Navier–
Stokes Equation (NSE) since the droplet drag law in (1) differs from the linear Stokes law
whereas the Basset term stems from the time-dependent linearized solution (Landau and
Lifshitz, 1995). Lovalenti and Brady (1993) pointed out that the history force for a sphere
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with Reynolds correction undergoing step velocity changes behaves as t�2 during acceleration
from rest and as t�1 when it comes to rest whereas for changes between finite velocities the his-
tory force decays exponentially. Furthermore, Lawrence and Weinbaum (1986) have shown that
the history force also depends on particle shape introducing still another additional temporal
behavior.

Experimentally, Mordant and Pinton (2000) for macroscopic solid spheres starting from rest in
water observed for short times t�1/2 behavior while at long times history force was better fitted by
exponential decay. In view of the short observation times in our experiments and the unsettled
questions concerning the true behavior of the history force mentioned above we used the Eq.
(1) with Basset force in the form as in the most previous works. Such Basset term yields a t�1/2

dependence on time. To take into account finite particle Reynolds numbers a correction coefficient
Ch is applied to the history term in Eq. (1) (Kim et al., 1998).

Accordingly Odar and Hamilton (1964), the coefficient can be expressed for Rep < 60 as
Ch ¼ 0:48þ 0:52M3
A=ð1þMAÞ3:
Finally we should note that the Basset force for particles in a chain differs from the isolated
particle case. But we used in (1) the expression for the Basset force as for a single droplet. This
assumption is based on the conclusion of the theoretical work of Leichtberg et al. (1976) that
the Basset force in a configuration only slowly changes due to particle interaction. This conclusion
was made for the multiparticle gravitational-Stokes flow interactions. It is reasonable that this
conclusion is valid for our case.

To account for the particle drag reduction due to the influence of neighboring particles in a par-
ticle chain an interaction parameter k is introduced, defined as the ratio of the drag coefficient of a
particle in a chain, CD to the one of an isolated single particle, CD0, i.e. k = CD/CD0. The intro-
duced interaction parameter expresses the drag correction of the single droplet due to the inter-
action with other droplets. In general for the two-dimensional droplet travel path observed in
experiments k is a function of all the particle spacing and velocities and their spatial arrangement
relative to each other. From the results of previous works on the particle interaction in linear
chain it can be concluded that the nearest leading particle has the largest influence on a trailing
particle�s drag when they move along the common axis. Therefore, as mentioned above, the radius
of curvature of the droplet trajectory is much larger than its size. Because of this, it is justified to
assume that the interaction parameter depends only on the distance s between two interacting
droplets k = k(s), and data for drag correction due to the hydrodynamic interaction in the fluid
flow past the linear array of the solid spheres can be used.

The aerosol droplets observed in experiments move practically by the same trajectory without
considerable oscillations (Figs. 3 and 4). Then to calculate the particle motion in a chain we adopt
the approach used in the work of Ruzicka (2000) for motion of bubbles with all particles being
identical. Such a model describes the behavior of particles in a stable chain that is actually ob-
served. We consider all droplets as the trailing particles and use the Eq. (1) for description their
travel by the same trajectory. Instabilities and neutral oscillations would make this approach
unsuitable. Including the interaction parameter k = k(s) into a modified relaxation time s*, the
equations of particle motion in a Cartesian coordinate system taking into account (2) can be writ-
ten in the form
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dvx
dt

¼ � vx
s�
ð1þ wv0:687Þ � b

Z t
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ð4Þ
where vx, vy are the particle velocity components, s* = sSt/k(s) is the Stokes particle relaxation
time sSt = qpd

2/18l modified by the hydrodynamic interaction parameter k with the other drop-
lets in the chain, qp is the particle density, g is the gravity acceleration,
w ¼ 0:15ðdqg=lÞ
0:687, v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
, b ¼ 9Ch

ffiffiffiffiffiffiffiffi
lqg

p
=dqp

ffiffiffi
p

p
:

The non-dimensional inter-particle distance s (defined as the shortest distance between the
droplets surfaces divided by the particle diameter d) for a given motion law of chain particle
x = x(t), y = y(t) can be written as (for 2D motion)
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðt þ tgÞ � xðtÞÞ2 þ ðyðt þ tgÞ � yðtÞÞ2

q
d

� 1: ð5Þ
tg = 1/mg is the particle generation time interval (mg is the generation rate).
The initial conditions in (4) at t = 0 take the form
vx ¼ �v0, vy ¼ 0, x ¼ 0, y ¼ 0 ð6Þ
for horizontal motion and
vx ¼ 0, vy ¼ v0, x ¼ 0, y ¼ 0 ð7Þ

for vertical motion.

To close the system (4) we should determine the function k = k(s). There is little information in
the literature concerning the drag correction function for finite small Reynolds numbers in unstea-
dy chains. As first approximation the assumption is reasonable that the main part of drag reduc-
tion of particle in a chain in the small Reynolds number region can be obtained by means of the
creeping flow theory. Because of this, neglecting the complexity of the drag in an unsteady chain
of many interacting droplets, we used instead the data from a theory for stationary Stokes flow of
a linear array of spheres at fixed distances based on the multipole representation technique
(Gluckman et al., 1971). Within this theory the magnitude of the hydrodynamic interaction be-
tween droplets grows with increasing chain length and decreasing droplet distance. The results
of Gluckman et al. also show that the relative change of the drag reduction strongly decreases
starting with chains consisting of more than a few spheres. We used the theoretical values of
the drag reduction according to the results for the middle sphere in chains of 7 and 101 spheres
at different spacing distances. The fitting functions for the respective data as a function of the no
dimensional inter-particle distance s are
k ¼ 1� expð�0:32–0:16sÞ ðn ¼ 7Þ ð8Þ
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Fig. 5. The drag correction as a function of inter-particle distance.
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k ¼ 1� expð�0:11–0:13sÞ ðn ¼ 101Þ ð9Þ

where n is the number of spheres in a chain. Fig. 5 shows the k = k(s) according to the above rela-
tions (8) and (9) together with Gluckman�s data. The upper curve in the graph corresponds to the
drag reduction function for two particles moving along a line connecting their centers in creeping
flow (Happel and Brenner, 1973). As expected, the drag correction function for a chain of many
particles is lower than for only two particles. Comparing the k(s) for two interacting droplets in
Stokes flow with experimental data for Re > 0 from different authors shows that the curve of
Happel and Brenner (1973) can be taken as bounding curve k(s). Therefore, we can conclude that
for finite Reynolds numbers k(s) should be located somewhat lower than the functions (8) and (9).

Employing (4), (8) and (9) we will consider the interaction parameter k(s(t)) as a function of
time. To find the function s(t) and therefore k(t) a simple iteration procedure was used. Equations
(4) are solved numerically many times starting with k = 1. The numerical function s(t) from pre-
vious iteration is used by interpolation to express the function k(t) on the each next iteration. A
few iterations will suffice to obtain a converging solution.

In order to roughly assess the importance of the history term (4) was solved with and without it.
4. Results and discussion

For comparing theory with experiment, the droplets were photographed and average values of
k0 for whole chains (produced with different droplet generation intervals tg) were determined by
least square fitting to the droplet locations. The values of k0 for horizontal and vertical jets of
droplets at the same generation rate are very close and the fit to the experiments resulted in
k0 ¼ 1� expð0:56� 1:74 t0:56g Þ: ð10Þ
(tg in ms). This was done by numerically solving (4) for the interaction parameter k0 for all the
different generation time intervals tg.
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For a simple display of the results we investigated the droplet trajectory endpoints xs for hor-
izontal jets and the height of particle vertical jump ys for vertical jets. The quantity xs is defined
as the distance in horizontal direction traveled by a droplet until it leaves the lower frame
boundary, i.e. after having fallen �1cm vertically downward. The parameter ys for vertical mo-
tion is determined as the distance of upward droplet motion until the vertical velocity reverses
sign.

In general, the Basset force integral should include the sudden change of particle velocity up to
the initial velocity v0 and subsequent deceleration (Landau and Lifshitz, 1995). Part of Basset inte-
gral connected with initial sudden acceleration can be written after integration in an analytical
form
Fig. 6
horizo
influen
J 0 ¼ v0b
1ffiffi
t

p :
A globally adaptive scheme based on Gauss–Kronrod rules (Calvetti et al., 2000) was used to
calculate the integral in the expression for the historical force with the velocity derivative due to
the particle deceleration.

Some results of the numerical calculations are presented in the Figs. 6–10. Note that these re-
sults were obtained by numerical integration the Basset force term without accounting for the ini-
tial acceleration. Fig. 6 shows the droplet trajectory endpoints with and without Basset force
influence as a function of tg according to the above-described numerical model using the the-
ory-based variables k(s) (8) and (9) and k0 derived from experiments in the form (10). As tg de-
creases, the trajectory endpoint grows due to increasing particle interactions in the droplet
chain. The theoretical curve of the dependence xs(tg) obtained by solving (4) with the drag reduc-
tion law for a chain with 101 particles is higher than the corresponding curve for n = 7 due to the
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larger drag reduction of a center particle in a longer chain. The experimental curve for k0 lies be-
tween the numerical curves obtained at n = 7 and n = 101, respectively. This makes sense, since
the observable part of the chain changes from ten particles for tg = 8ms to almost one hundred
particles for tg = 1ms. The fair agreement between the numerical approach and experimental data
means also that the resistance reduction in creeping flow can be applied in combination with the
Reynolds correction.

For decelerating particles the Basset force increases the droplet trajectory endpoint as can be
seen from the Fig. 6. The theoretical curves xs(tg) calculated without Basset force lie below the



Fig. 9. Comparison of the dependence of the height of the droplet vertical jump on the particle generation time interval
for vertical jet. Numerical model: open and filled triangles are the results of calculation without and with Basset force.
Experimental trajectories: filled circles.

Fig. 10. The relative height of particle vertical jump as a function of the particle generation time interval tg.
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corresponding curves obtained including Basset force term because the influence of history (Bas-
set) force on the interacting droplets motion partly compensates for the Reynolds correction in
our experimental conditions.

The numerical integration in the Basset force term is a time consuming procedure. Because of
this, we checked also the simple approximation for the Basset integral given in Nigmatulin (1990).
According to Nigmatulin we can approximately express the history force integral as
Z t

0

dv
ds

dsffiffiffiffiffiffiffiffiffiffi
t � s

p � v� v0ffiffiffiffiffiffiffiffi
0:5t

p : ð11Þ



66 W. Holländer, S.K. Zaripov / International Journal of Multiphase Flow 31 (2005) 53–68
Formula (11) is the expression of the mean value theorem for definite integral choosing s = 0.5t
as an average value. The dependencies of droplet trajectory endpoints on tg calculated by
numerical integration of the history force term and approximate formula (11) shown in Fig. 7.
The small difference between the results obtained by means of two approaches (no greater than
3%) indicates that the simple formula (11) works well and can be used to express the history force
integral in non-stationary problems.

It should be noted also that accounting the initial droplet acceleration during nozzle ejection
reduces the Basset force term in disagreement with observation. We believe this could be due
to the liquid jet oscillations back into and out of the nozzle and the gas flow boundary conditions
there.

The fit to the experiments k0 is shown together with the ratio xs(k0 = 1)/xs(k(tg)) for horizontal
jets in Fig. 8. Obviously, the ratio for n = 101 almost coincides with the experimental function
k0(tg).

Figs. 9 and 10 show similar data for vertical motion, i.e. including the effects of gravitational
deceleration from the numerical solution of (4) and (7) with and without the Basset force. The
same conclusions as above can be drawn for vertical motion, too. The theoretical model predicts
a slightly larger interaction parameter than for horizontal motion case i.e. a smaller hydrody-
namic interaction. This can be explained by the absence of additional forces and particle collisions
in the theoretical model. Actually, in experiments pairing and particle collisions were observed for
vertical jet, respectively. Such effects will have to be addressed in future studies.
5. Conclusions

Experiments demonstrate a noticeable hydrodynamic interaction between moving droplets in a
horizontal and vertical chains resulting in increased distances traveled by droplets for otherwise
unchanged diameters and initial velocities.

Applying a stationary interaction model within creeping flow approximation and combining it
with the standard history force, we find reasonable agreement of experimental results with the
solution of the equation of droplet motion including the drag correction of the droplets in chain.
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